lakemorpho: Calculating lake morphometry metrics in R
نویسندگان
چکیده
Metrics describing the shape and size of lakes, known as lake morphometry metrics, are important for any limnological study. In cases where a lake has long been the subject of study these data are often already collected and are openly available. Many other lakes have these data collected, but access is challenging as it is often stored on individual computers (or worse, in filing cabinets) and is available only to the primary investigators. The vast majority of lakes fall into a third category in which the data are not available. This makes broad scale modelling of lake ecology a challenge as some of the key information about in-lake processes are unavailable. While this valuable in situ information may be difficult to obtain, several national datasets exist that may be used to model and estimate lake morphometry. In particular, digital elevation models and hydrography have been shown to be predictive of several lake morphometry metrics. The R package lakemorpho has been developed to utilize these data and estimate the following morphometry metrics: surface area, shoreline length, major axis length, minor axis length, major and minor axis length ratio, shoreline development, maximum depth, mean depth, volume, maximum lake length, mean lake width, maximum lake width, and fetch. In this software tool article we describe the motivation behind developing lakemorpho, discuss the implementation in R, and describe the use of lakemorpho with an example of a typical use case.
منابع مشابه
The Morphometry of Lake Palmas, a Deep Natural Lake in Brazil
Lake Palmas (A = 10.3km2) is located in the Lower Doce River Valley (LDRV), on the southeastern coast of Brazil. The Lake District of the LDRV includes 90 lakes, whose basic geomorphology is associated with the alluvial valleys of the Barreiras Formation (Cenozoic, Neogene) and with the Holocene coastal plain. This study aimed to investigate the relationship of morphometry and thermal pattern o...
متن کاملPredicting Maximum Lake Depth from Surrounding Topography
Information about lake morphometry (e.g., depth, volume, size, etc.) aids understanding of the physical and ecological dynamics of lakes, yet is often not readily available. The data needed to calculate measures of lake morphometry, particularly lake depth, are usually collected on a lake-by-lake basis and are difficult to obtain across broad regions. To span the gap between studies of individu...
متن کاملLoss of trophic complexity in saline prairie lakes as indicated by stable-isotope based community-metrics
Variations in climate, watershed characteristics and lake-internal processes often result in a large variability of food-web complexity in lake ecosystems. Some of the largest ranges in these environmental parameters can be found in lakes across the northern Great Plains as they are characterized by extreme gradients in respect to lake morphometry and water chemistry, with individual parameters...
متن کاملHypolinimetic oxygen deficits: their prediction and interpretation.
Rates of hypolimnetic oxygen depletion can be predictedfrom a knowledge of a lake's phosphorus retention, the average hypolimnetic temperature, and the mean thickness of the hypolimnion. Areal oxygen deficits cannot be used to index lake trophic status because areal calculations do not eliminate the influence of hypo-limnetic morphometry.
متن کاملA genetic basis for the phenotypic differentiation between siscowet and lean lake trout (Salvelinus namaycush).
In Lake Superior there are three principal forms of lake trout (Salvelinus namaycush): lean, siscowet and humper. Wild lean and siscowet differ in the shape and relative size of the head, size of the fins, location and size of the eyes, caudal peduncle shape and lipid content of the musculature. To investigate the basis for these phenotypic differences, lean and siscowet lake trout, derived fro...
متن کامل